منابع مشابه
The prime geodesic theorem for higher rank spaces
The prime geodesic theorem for regular geodesics in a higher rank locally symmetric space is proved. An application to class numbers is given. The proof relies on a Lefschetz formula that is based on work of Andreas Juhl.
متن کاملA prime geodesic theorem for higher rank spaces
A prime geodesic theorem for regular geodesics in a higher rank locally symmetric space is proved. An application to class numbers is given. The proof relies on a Lefschetz formula for higher rank torus actions.
متن کاملThomson’s Theorem on Mean Square Polynomial Approximation
In 1991, J. E. Thomson determined completely the structure of H2(μ), the closed subspace of L2(μ) that is spanned by the polynomials, whenever μ is a compactly supported measure in the complex plane. As a consequence he was able to show that if H2(μ) = L2(μ), then every function f ∈ H2(μ) admits an analytic extension to a fixed open set Ω, thereby confirming in this context a phenomenon noted e...
متن کاملTwo-geodesic transitive graphs of prime power order
In a non-complete graph $Gamma$, a vertex triple $(u,v,w)$ with $v$ adjacent to both $u$ and $w$ is called a $2$-geodesic if $uneq w$ and $u,w$ are not adjacent. The graph $Gamma$ is said to be $2$-geodesic transitive if its automorphism group is transitive on arcs, and also on 2-geodesics. We first produce a reduction theorem for the family of $2$-geodesic transitive graphs of prime power or...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Number Theory
سال: 2019
ISSN: 0022-314X
DOI: 10.1016/j.jnt.2018.10.012